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POTENTIAL FLOW ABOUT ARBITRARY BIPLANE WING SECTIONS
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SUMMARY

treatmeni i8 given of the problem of deter-
twodimensimud poteniial %W around

arbitr;~ biplune cei%des. Tli anuly8is- involmx the
u8e of elliptic junc-tiorMano?ti swj?i%n.tly gm.ed to
h&u&? the e~ed8 Ofewch~ m the 88@%?L8hape8,
the chordratw, gap, stagger,and decalage,which eknwni%
wv be speci~ arbitrarily. The $OW problem is re-
solved by making waeof the &ho& of confomncdrepre-
8HUtatiO?L.ThIM the solution of the problem of trans-
forming confody two arbitrary c@ours irdo two
circles ia tzrpre88edb-y a pair of timdanzau iniegra-1
equaiimw,for which a method of numerical solution b
otilined. It b poirded 0U4tti ‘an inverse method of
transforming wnfody two circles into the wing pro-
fi?e8 of a bipl.wu arrangement led readdy to tha dad-
opnuni of relatedfamilti of biplane combinatti. Flow
formulae are developed giving the velocity and pressure
at any poiti of tha &ace of eiiher proj.1.eof thOarbi-
trary biplmu arrangenwni,for any angle of aitack. The
theory of tha monop.?muwing section in potti”al$ow ti
shown to be a degeneratecase in whtih tlu elliptic func-
tiom? reduc8 to trigo?unm?tricfunctiOrW The genera-l
mdwd presented may be employed to deiermirw the
poteniiul@w in any cikublyconnected region and hence
may beapplied to thesingle 81?.ottedwing or to theauxikry-
a&foil wing.

A8 an example of the numerical proctxs, the prewure
dtitribwtionover certain arrangementsof the N. A. C. A.
&19 airfoil in biphzna combinutwn.sis presented and
comparedwnlhthe monoplane prww.re diatribuiiim.

INTRODUC~ON

It is the purpose of this paper to develop a general
theory of arbitrary biplane celh.desof infinite span in
potential flow. No attempt is made hereto treat the
case of iinite span or to cotider viscosity; rather it is
the object of this work to bring the two-dimensional
theory of biplane celhdes in uniform, steady potential
flow to the same degree of exactness and generality to
which the two-dimensional monoplane airfoil theory
has been brought. The analysis will be sticiently
general to include such elements as profile shapes,
chord ratio, gap/chord, stagger, and decalage, and

will.contain as special CS9E23the monoplane theory, a9
well as the theories of the slotted monoplane wing, of
the auxiliary-airfoil wing, and of the influence of the
ground or plane barriers on a monoplane airfoil in
two-dimensional potential flow.

In order to arrive in a natural manner at a perspec-
tive of the biplane analysis it is advantageous to con-
sider fit the simpler case of the monoplane wing
section and to keep in view the essential concepts that
carry over to the biplane analysis. It is well known
that by virtue of the methods of confomml represen-
tation the two-dimensional potential flow mound a
single obstacle can be obtained by the following
process. In the first place, a standard contour is
seleeted, the region about which is simply connected
and the flow function of which in uniform potential
flow is lmown or obtainable. The transformation
must then be found that transforms conformably +&e
region of the given obstacle into this standard region.
This transformation, in combination with the known
flow function, gives the desired flow function for the
obstacle. In the case of monoplane wing proiiles, the
standard flow region may be chosen to be that about
a circle and the theorem which statea that it is possible
to transform conformably the contour of the given
obstacle into a circle is lmown as Riemann’s theorem.
(Cf., for example, reference 1.) In the case of two
obstacles, the region is termed “doubly connected”
and the process is again applicable except that the
standard doubly connected region is chosen to be the
region about two circles. The theorem that states
the existence of a transformation function bringing
the doubly connected region (region of the biplane
contours) into the region of two circles is Koebe’s
theorem (referance 2).

The flow function giving the uniform potential
flow for a circular cylinder is well lmown and, in
determining the flow about a monoplane airfoil section,
the main problem is the transforming of the airfoil
contour into a circle. In order to attain this remit
in a simple manner it is necessary to perform a few
intermediate transformations. The airfoil profile it-
self may be regarded as a contour described about a
conveniently chosen line segment or chord. An
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initial transformation of a simple type exists (the
so-called “Joukows~ transformation”) that trans-
forms the chord into a unit circle and automatically
maps the airfoil contour into a nearly circular contcur
described about the unit circle. There remains then
the final task of transforming the nearly circular
contour into a true circle, and this may be performed
by a method given by Theodomen (reference 3). This
method leads directly tc a simple integral equation
which can be solved by a process of iteration or suc-
cessive approximations and which ccnvergm with
extreme rapidity. (Cf. reference 1.) It is important
in regard to practical considerations ta observe that
the method is so powerful that one step in the process
is quite sufficient in all ordinary cese9.

The standaxd doubly connected region has been
chosen as the region about two circles; and it is worthy
of mention that only as recently as 1929 was the
ccmplex flow potantial for two circle9 rigorously
developed (by Lngally, reference 4). Dupont, Bonder,
and MiiUer (references 5, 6, and 7) have also con-
tributed to this problem but Lagally ’s solution is
the more elegant. The flow function for two circk
being known, the main problem in ihling the flow
about a biplane arrangement is the obtaining of the
transformation mapping the two contours into two
circles.

In a manner analogous to the case of the single air-
foil section, the contours of a biplane ~ement may
be considered to be described about a skeletcn of two
conveniently placed mean lines or chords. Hence, to
maintain the amdogy it is seen that initially it is desired
to find a transformation function w~ch transforms
the two line segmente into two circles. This prob-
lem has been touched upon by Kutta who has given the
uniform potential flow for the special case of two paral-
lel equal line segments (reference 8). The transforma-
tion function bringing two circles into any two pam.?lel
line segments has been developed by C. Ferrari (ref-
erence 9). In the fistpart of the pre9ent paper the
more general problem of decalage of the line segments
has been studied and a function developed that trans-
forms two circles into any two nonintersecting line seg-
ments in any relative positions. This function that
transforms the skeleton or chords of the liplane ar-
rangement into two circles aIso transforms the contours
themselves into two nearly circular contours described
about the skeletin circles. There remains then the
problem of transforming the ho nearly circular con-
tours into two true circles. In order to accomplish
this taEk, the method of Theodorsen is generalized in
the present paper to apply to doubly conneckl regions
by employing the concentric circular ring region as a
standard region and by utdizing a Laurent seriesdevel-
opment instead of a one-way power series. There is
obtained ilnally a pair of simultaneous integral equa-

tions expressing the conformal representation of the
two nearly circular contcura into two oircles. Just
as in the case of the single integral equation in the
monoplane case, there exists an analogous process of
successive approximations or iteration that converges
with the same remarkable degree of rapidity.

The general transformation from the biplane con-
@rs to two circles together with the Lagally formula
for the flow about two ci.mleayields an expression for
the velocity and pressure at each point of the surface of
either profile of the biplane arrangement. There are
two axbitrary circulations in the flow formula, viz, the
separate circulations around each contour, and these
are determined uniquely by applying the well-known
Kutta-Joukowsky condition to the trailing edges of both
contour-s,spwifying thereby that the flow leaves these
edges smoothly.

In the case of monopkme wing theory it has been
shown (reference 1) that theoretical shapes can be
conveniently developed by an inverse method of
transforming conformably a circle inti a wing profile.
The JoukowE@ airfoils and the other se-called “ theo-
retical” airfoils are special examphw of this process.
In an analogous manner it is possible to develop theo-
retical biplane combinations by an inverse process of
tradoming two CMW into two cent.oursresembling
wing profiles. A general and flexible method of obtain-
ing these shapea is presented; the results are especially
instructive in that, in this procws, the integral equa-
tions referred to in a preceding paragraph reduce to
definite integrals.

EJliptic functions arise in a natural manner in the
analysis and the problem treatid provides a good
illustration of the power and beauty of these remark-
able functions. The general ,theory of the single,
arbitrary wing section is shown to be a degenerate
case in which the imaginary period of the doubly
periodic elliptic functions beccmes infinite, md hence
the elliptic functions reduce ti ordinary trigonometric
functions. A few pages are devoted to the monoplane
theory in view of the light that it throws on the more
general biplane analysis.

Numerical results are presented only h furnish an
illustration of the theory. In particular, the pressure
distribution is determined for certain arrangements of
the N. A. C. A. 4412 air~oilin biplane combinations.
The elliptic functions that arise in the analysis and
that are to be evaluated in a numerical ccse may
fortunately, when necessary, be developed in rapidly
convergent expansions.

Statement of the problem.—The problarn treated in
this paper may be restatad as follows. Given, an
arbitrary biplane arrangement oriented in a speciiied
manner in a nonviscous, incompressible fluid medium
and translated with uniform velocity V. To determine
the velocity and pressure distribution in two-dimen-
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sional potential flow in the field of motion for all
anglea of attack, particularly, at each point of the
surface of the bipkme profiles.

As has been pointed out, it is well recca@zed that the
aforementioned problem may be treated in two stages.
In the first place, the complex function expressing the
confornd transformation of the region of the biplane
into a standard doubly connected region must be
obtained and, finally, the complex flow function for
this standard region, which iE chosen aa the region
about two circles, must be known. The region ex-
ternal to the two contcum of a biplane arrangement
will be brought into the region about two circles by the
intmnediate use of two nearly circular contours..
Before this result can be accomplished, however, it is
desirable to discuss several preliminary transformat-
ions.

1. PRELIMINARY TRANSFORMATIONS

I?irst,the transformation bringing the region external
to two nonintemecting circles (tplane) into the annular
region between two concentric circles (to plane) will be
obtained. This annular region will then be mapped
into a rectangular region (s plane) and the rectangular
region into the region about two be segments (u
plane). (See fig. 1.)

t,

The curves r2/rl=ccmstant are circles with centers
lying along the & axis (theorem of Apollonius). This
family of circles contains the points QI and Q2 as
limiting circles of zero radius. For points in the
upper half plane (tz>O) we have rJrl>l, for points in
the lower half plane rJrl<l, while on the G tmis,
r,/rl=l. The curvm given by y,–y,=constant also
form a family of circles (t@orem of the constant angle
subtended by the chord of a circle) which is orthogonal
to the iirst system and each circle of which contains
the limit points QI and Q2on its circumference.

A new complex variable W= CeP+ois now introduced
by the following relation

_=ep+f8=!@=QeKY*-Ypw
c t—z.c r, (2)

Hence

/L=log;

b72-~1
Also

~=kw+c
w—c

(3)

(4)

These equations transform cmformally the comial
system of circles of the t plane into a concentric system
of circlca in the w plane. In particular, two circles KI
and K* in the t plane, KI locatad in the upper half

P, Y

[a) b) (c) (d)
FIOUEEl.–bfnpphg OL(a)twocwxfd oIrdes In thet planeinto(b) two conmnfzlo drolw h the wPIUW (0) re=dwdw -~@8ph%(d)%b

~ts inthe u Plmo.

Transformation of a ooaxial system of circles into a
aonoentrio system.—A coaxial system of circles may
be described most simply by the use of bipolar coordi-
rmtcs. Consider a complex -t plane where t=tl+&.
Let QI (O,i.o) and Q* (0,–io) located on the t, axis be
the origins of two polar coordinate systems TI,w and
r2,y2. The variable t may be written in the two forms:

t=ic+rleffl= —ic+rieffz

Then in the relation

(1)

there are expressed in a convenient form, the bipolar

coordinate ~ and 72—71. (See fig. 1 (a).)

plane and K2 in the lower half plane and defined by
logr2/rl=aandlog r,/r,= –p,respectively (a>O, B> O),
transform into two concentric oirck BI and l?x about
the origin in the w plane, of radii w and ce-~, respec-
tively (fig. 1 (b)). It is noted also that the tl axis
transforms into the circle of radius c in the w plane,
and that the region at infinity in the t plane maps into
the neighborhood of the point W=C. It may also be
remarked that the circles orthogonal to K1 and &
tramform into radial lines through the origin.

Transformation of the oirouhr systems into rectan-
gular systems.-There is now introduced another vari-
able t?= X+iv defined by the relation

t+ic
S=i log ;=i log ~ (5)
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Separating into real and imaginary parta

A=– (’yr-yJ=–o

V=log:=p
}

(6)

1!ence the variable s mny hereaft& be denoted by

s= —t)-l-{p or &o by s=A+iP

Also from (5) we have
~=m-il (7)

nnd

‘=<’=a=-cco’i (8)

The circles in the t plane, rZ/r,=ccmstant (or the
circles in the w plane ceP= constant), correspond
uniquely to the straight lines p= constant in the s
plane. In particular, the limiting points Q, and Q2
correspond to p= w and p=-, respectively. Also
the tl &s corrwponds to the * P=O, the point at
infinity in the t plane going into the origin 8=0.
The circular arcs yl–y,=constant between Q, and Q,
cerrwpond to the Iincs k=constant. It is noted, how-
ever, that this latter correspondence is infinitely many-
valued since the addition of integral multiples of 2r to
w or 72 does not alter the circular arc c.-onsidered;
hence, -y,- ~,=ccmstant corresponds to the infinite
number of parallel lines X=constsnt +2k~, where k
is any integer (fig. 1 (c)).

The whole t plane has thus iniin.itely many values
on the .splane, but there is a one-to-one correspondence
between the whole t plane and a strip of width 2r
bounded by two parallels to the P axis. In the fol-
lowing investigation, the strip in the 8 plane bounded
by the lines A=—Z and A=X will be considered as
the representation of the t plane cut along the length
Q~Qz.

Equation (5) thus defies a ccmformal transforma-
tion of the coaxial system of circle9 in the t plane, or
of the concentric system of circles in the w plane, to a
rectsmguk system in thes plane. k particular, con-
sider again the two”definite circles KI and Kz of the
coaxial pencil. The circle KI is defined by log rJrl=
p= a and the circle Kz by log rJrl=p= —/3where a and
f? me positive comtants. It is then noted that the
region of the t plane external to the circles KI and Kz
(or the ring reggon within B, and BJ corresponds
uniquely to the rectangukw region bounded by the
lines p=a, y=—~, A=—r, and A=r. (The two sides
A= –T and A=r correspond to the right and left
edges respectively of a cut sdong the t~ axis drawn
between the two circles.) The rectangle contains,
necessarily, the point .s= O as an interred point.

Geometrical relations.-Attention may be momen-
tarily diverted to some geometrical relations existing
in the various planes Let the rrdii of KI and Kz be
a and b, respectively, and let the centers of KI and K1
be situated at 0, and 0,, respectively (fig. 1 (a)).

The quantities a and b may be expressed in terms of
a and P. The equation of KI in bipolar coordinates
is, by equation (2)

r, t+i.e

E= G ‘e=

Writing t=tl+itz there results upon expansion

i~+t2z–2Ct* Cdl a+i?=O

which is the equation of n circle whose center 01 is
situated at

t2=c mth a

cad whose radius is
(Z=C csch a

similarly, for the second circle K,, the center 0, is mt

t2= —C coth ~
and the radius is

b=C csch ~

Denoting by d the center-to-center distance 0102
(fig. 1), there may be written the equations:

a=c csch a
b=C csch ~ I (9)
d=c (COth a+coth /3)

which suffice to fix a, 6, and d in terms of a, P, and c.
l?o~~ the auxiliary quantity d–aa–~s, it is found
that &—a*—P=2abcosh(a+B) It immediately follows
that

SiIlha-$ SiIlh (a+~) I (lo)

Sinh /9=;Si.uh(CY+19)]

We observe that the quantity a+~ on the right-hand
side is expressed in terms of a, b, and d by the relation

2. TRANSFORMATION OF TWO CIRCLES INTO TWO
ARBITRARY LINE SEGMENTS

The transformation that maps the rectangular region
in thes plane into the region external to two noninter-
secting line segments in a u plane will now be derived.
k combination with the preliminmy transformations
of the preceding section this result will then transform
the region of the two circles K1 and KZ of the t plane,
or the ring region of the w plane, into the region of
the line segments. Let the u plane (fig. 1 (d)) contain
the two line segments c, and c, and let u(t)=X+iY be
the analytic function that transforms the circles KI
and K2 into the desired line segments. With no loss
in generality, the system of coordinates in the u plane
may be so chosen that the X axis is parallel to cZ, Let
the line seggent c1 be inclined at an angle –6/2 with
respect to the X axis. (The negative sign before 6
is a matter of later convenience; fig. 1(d)) muy be
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regarded as illustrating the definition of positive
decrdage.) Let 11 and 12 denote the two lines p=a
and p= —P of the rectangular s plane that corre-

spond to K1 and K2, then, it is evident that $$=0

for points of K, or 12and ~y= –tan ~ for points along

Kl or I?l. Let j(s) =% be the derivative of the func-

tion u(s) that gives the desired correspondence between
the u ands planes. From the well-known property of
conformrd mapping, viz, that tangents at correspond-
ing points in the two planes di%r in direction by the
argument of the derivative function, it follows that
the argument off(s) equals O (or T) along lJ and equals

—6/2 (or — 6/2+T) along 11,or

Y(8) is a real quantity along ?2

j(s)e”l’ is a real quantity along 1,

By a principle of Schwarz the as yet undetermined
function Y(8) has the property of being extended by
analytic continuation to the whole strip region iu the
s phne (fig. 1(c)) fOr,SinCO j(8) k Md dOIIg I?2, its
values for n pair of reflected points mirrored in the
line la are conjugate complex. Similarly the function
j(s)e~i~ may be reflected about the line ll. With
successive alternate reflections in 11and 12~(s) takea
on values as shown in figure 2. For every two succes-
sive reflections the original values of Y(8) are repeated
except for a multiplying factor e-~. Hence it is clear
that j(s) must satisfy the relation

fls+2i(a+/3)]=j(8) e-~ (1)

Also, since ~(s) is a single-valued function of t, it
satisfies the condition

f(s+2T) =j(s) (2)

If 6=0, then e-i$=l and it is seen at once that~(s) is
then a dowblyperiodic function, hence an elliptic func-
tion (of the first kind), of real period 2w=2m and of
imaginary period 2u’ =2i(a+#). In the general case
where 6# O, the function Y(8) is not a purely doubly
periodic function but, sinca one of its periods gives
rise to a multiplying factor, is an elliptic function of
the second kind. It is completely determined, except
for a constant, by its behavior at its poles, in the
neighborhood of which the function becomes infinite
(Hermite’s theorem). In the present analysis, we
shall consider the fundamental periodic rectangle as
formed by the original transformed rectangle and its
reflection in the line 12(@. 2).

We now investigate the poles of the function

~(s)=~ We assume that at infinity ~]=[il, in order

that the regions at infinity in the u “wd t planes be

\qually magniiied and map into each other (mcept
~ora possible change in direction), and we have

du =1
H t- -

m noting equation (1.8)1

H=m=la.o”El..=l%l.o”lFH=m=l ‘3)

IL 1< s Plane

i-li2r

_- f[s)ei’

---J’@i6

I
COnhatem.wk wmtft9of flu).

This relation shows at once that j(8) possesses a singu-
lar point at s=O, and hence has one also at the point
obtained by reflection of s=O in 12,viz, s= —2@. In
the neighborhood of these poinb ~(8) becomes infinite

in the order of P as t~m or M $ as 8+0, i. e., has

poles of ordertwo at the origin 8=0 and at 8= —2@
,

lThbnotdcmdonotmeqdton(,8)of sm. L
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The fundamental function having a single pole of
ji.rst order (with residue unity) at the origin and satis-
fying the foregoing period requirements is (reference
10, p. 416, and reference 11, p. 369)

(4)

where u denotes the sigma function of Weierstrass and
possess- the following period properties

a(u+%) = —e-~(ah)u(u)
1

(5)
a(U+2u’) = —e-2@%ou(u)

The expression (4) for A(8) may also be written as
follows -

~(8)= H’(0)H(8+ 6)
H(a)H(8) (4’)

where the Jacobi H(eta) function is defined by the
, equation (cf. references 11 and 12)

5TlLm 2@in~:+2@’4shl 2UH(u) =2@in ~– —– . . (6)

and possesses the period properties

where

The relation

H(u+2co)= –H(u)

–1: u
H(u+2u’) = –q-’e H(u)

&
q=e w

existing between the u and H functions is
(reference 11, p. 4SS)

%H(u)
a(u)=e ~ (7)

A function such as we are seeking, having a single
pole of the second orokr at the origin and the required
period properties, may be obtained by taking the
n.egutwederivative of A(s) with regard to s. From
equation (4’) we have

H’(O) d H(s+6)
A’(s)=–%=–— H(a) x- (s)

The function is now determined except for con-
strmtsal and % is given by

j(s)=~=aA’(s)+~A’ (s+2W+a3 (9)

To determine the constants, observe that by means of
equation (3), and by the fact that the expamion of

.
A’(8) about the origin begins with the term $ we have

in the neighborhood of s=O

l$lt..=kL#ll..=l

A?c

II
and since horn equation (1.8) It1~.. = ~ ,-0 there re-

sults lall=2c. Thus the magnitude of a, is determined

smd, in general, we may put al=2ee ‘Y where 7 is an
arbitrary real parameter that determines the stagger
of the segments, and the significance of which will be
seen shortly. It may be observed at this point that
with al=2cefl the following relation holds

%’l(..ceffla.m=e”(10)

i. e., the regions at iniinity in the u and tplanes agree in
magnitude but d.iiler by angle 7 in direction. In
order to determine a~it is sufficient to recall that ~(8)
must remain real on L hence it may be seen that ag
must equal 2c&ff. Then finally equation (9) m~y be
expressed as

#=2c[A.’(8)ei7 +A’(s+2i9)e-’~ (11)

The general function relating the u ands planes is then
by integration ‘ ith regard to 8

‘U(8)= —2C[A.(8)6?i7+~(8+!2@3-i7]+k (12)

where the function A(8) is given by (4) or (4’) and
where k is an arbitrary constant that is independent of
s but may contain the parameter &z

The singular points of transformation (12) are given

by the roots of the equation
oh
~=0. It is possible to

draw at once certain conclusions with regard to the
singular points. There exists a theorem on elliptic
functions (reference 11, p. 366) which states that the
number of zeros of an elliptic function (of the tit
or second kind) in a periodic rectangle is equal to the

number of polm. Since f (8)=$ has 2 poles of second

order in the periodic rectangle it follows that the

equation *=O poss-es 4 roots in this rectangle. It

is demonstrable without difficulty that 2 of the zeros
are located on the boundary Y=a and the remaining
2 on the boundary p= —f?. These zeros correspond
to the end points of the line segments c1and C2of the u
plane. It may be stated for reference that on 19the
singular values of A are obtained from the equation

du_o
~– =A’(A–@)e’7+A’( X+ifl)e-i7

or since A’ (A—zl?) and A’ (A+if?) are conjugate com-
plex quantities, the dngular points sre given by the
Sohltions of

Re. A’(X–ip)e’7=0

where Re. denotes “real part of.” On 11,we employ
the period property (1) of A.(s) and obtain for tho
equation satisfied by the singular values of h

Re. A’(A+ia)ef(7+8~=0

1Tho mmtider of W don Is onnmontary to Udn eqnntion. The roador
may, without 10s9of mntinolty, prmal to SM.~ B S8.
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Developments of A(g) convenient for numerical pur-
poses will be discussed shortly. It maybe of value to
consider tit several useful special examples of equa-
tion (12).

(a) Parallel segments of zero stagger 3 (6=0,
~= O).—It is necessa~ to observe first the limiting
form of A(8) as H. l?rom equations (4) or (4’) (or
cf. reference 10, p. 425) we have that

where the various forms are equivalent. The func-
tions u and r are Weiemtrms elliptic functions, and
H and Z, (eta and zeta functions) are the elliptic
functions of Jacobi and Hermits Then putting for

4C
convenience the arbitrary constant k=% —ic in equa-

tion (12) we obtain

(a) M

or we may put down the complete equation for refer-
ence as follows. Noting that

[ -:I=P(’)+:z,’(s)= –: f-(s)

where the Weierstraw p function is defined by .

p(s)= —$~(s), and writing S=A+LZ the equation

determining the singular points of c1is

p(x+ia)+p(A–ti) ++=o (15)

The addition theorem (reference 10, p. 140) of the p
function may be written

Here, ~(a)= –p(ia) and the bar designates that the
elliptic function ~ is based on periods 2X and 27 con-

U. plw?e qploneL?

# ~
,4.

,/ 6

i

/ Qk

#

,
C* .% ‘m

–~” —~—x’
M N N’ M’

_.: .+.:_x

JIJ

(c) (’4
I?IWEE a.–nlmtrotlng the u of PUYOU lb wrnentx (a) t plem. (b) UI PlmM (3-0, 7=o), (0) G Plane (@J, 7-TA), (d) U Plane (J-o, Y 3.rbitraW.

.~=~y=o‘t@)= -uI(s)=z+iy
I

= –2c[zl(8)+zl(.s+2i/3)]-i.c (14)

or (as given by I?errari),

= –2{t(8)+f(s+2@) –~]+const.

Obsetig that the Z, function has the following period
properties

21(8+2(0) –Z,(8) =()
Zl(8+2U’)–Z1(8)=–~

it follows that for y=a, y=c and for p=—& y=—c.
Hence the gap (7 between the line segments is 2c.
The case is illustrated in figure 3 (b).

The singular valuea of k are in this case given by

Re. Z,’ (8+ LY)=0
Re. Z,’ (8–if?) =0

The @seof PUEIIMha ~onts b’s beanstndledby Fa’mrI (mkmnm 9).

jugatetotheperiods of p, i. e., 2;=2$ and 2i’=2icA

(reference 10, p. 32). Making use of (16) and of the
di&rential equations for the p and ~ functions:

p’ (A)’= 4p’(x) –gap(A) –g~
~ (a)2=4~(a) –g,~(a) +g’

equation (15) becomes -

Ap(x)’+l?p(x)+c=o (17)
wbere

A=4[q/m–.j(a)]
B=4~(a)g+8(q/~)~ (a)–gl
C=4(q/T)~(a)’+g*~ (a)–A?g3

This equation determines the two singular points
for the upper segment cl. In general, there is only one
positive value of the root p(k), hence the singular
points, A=& h,, are symmetrical with respect to the
origin. The negative root does not give real values
for L I?or the lower line segment cz it is only neces-
sary to replace a by @ (Cf. reference 10, p. 272:
Given p(~), h find x.)
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The line segments c1 and q given by transformation
14) are without “stagger” since the midpoint of each

segment is located on the y m-s (fig. 3 (b)). b order
to obtain further insight into the generid transforma-
tion let us consider the case 6=0, 7=90°.

(b) Tandem parallel segments
( )

6=(), ~=; .—h

this case let the arbihary constant k= –c in trans-
formation (12), and noting equation (13), we obtain

Lim u(s)= U,(8)
Is-o,7;

= –2i.c[Z,(s)-Z,(s+ 2@)]-c (18)
= –2ic[~(8) –~(s+2@)]-c

It can be shown directly that the singular values of k
are O and r, for we have

dU,
~=()=p (8)–p(8+%B)

and if
p (u)=p(o) we must have

u= &v+2mw+2m’u’

are any integem. Hence, writing

(19)

where m and m’

S= X+{F we have
for the solutions of (19) in the fundamental periodic
rectangle X,= O and A,= m. I?igure 3(c) shows a
typical cormapondence for this case.

(c) Parallel segments of arbitrary stagger.-Let

()
the arbitrary constant k= $% cos yc sin T in

equation (12), and noting relation (13),

:% U(8)= U(8)= U, (8)COS y+ u,(s) sin y

=—2C(ZI(.S)LW+ZI (8)8-{y)-~-ff (20)

The function U(s) is the general relation bringing the
region about any two parallel line segments into a
rectangulm region in the 8 plane. In this transform
tion the values of the parameters a, & and 7 sdice
to k uniquely the chord ratio cI/G, the gapJchmd
G/q, and the stagger/c7wrdS/c, of the parallel seg-
ments. The gap between the line segments is 2Ccos y.
Figure 3(d) illustrates the detitions of the various
quantities. In the general case of parallel segments
of arbitrary stagger, thele are given the three ratios
cl:cZ:@:S and the parameters a, & and 7 are to be
determined. This problem involves the solution of
transcendental relations; in this connection it is con-
venient to dram up charts., e. g., figure 4. This
figure shows n cross plot that prwents @/cz, S’/c, in
terms of u’ and 7 in the case of equal chords cl/cz= 1,
i. e., a=&

The singulax points of equation (20) are defined by
the relation

dU
~= O=p(s)@+p(s+Z?)e-ff+~ 00s 7 (’21)

writing 8=A+ia in (21)we have
Cm ~@ (A+ia) +p(X—ia) +2q/r]

+i sin 7@(A+ia)-p(A-ia)]=o
Employing the notation of equation (17) and the rela-
tions preceding equation (17), there results

a4p4(k)+a@(X)+a2& (A)+alp(X)+aO=0 (22)
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where
a4=A2#
aa=MB@—4
~= (lP+2A(?)@
al=2BCW+gz

This equation sufiices to determine the values of h
xmresponding to the end points of the upper line seg-
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menta cl. In the case of the lower segment a is to be
replaced by f?. In general, there are only two positive
solutions for p(A); and it may be observed that the
solutions for both angles of staggar +-y are contsiued
in equation (22). @ sec. 4 approximations for the
Singularvalues of A are given by simple formulss.)

Jaoobi series-In order to obtain further insight
into the general relation (12) and to sepsrate u(s)=
X+W into its real and imsgimuy parts it is nece.swwy
to revert to Jacobi expansions. These developments
me especially useful where numericsl evaluations are
required.

By reference 10, psge 416, we have the following
expansion for the function A(8):

where

The expressionfor Zl(s) occurring in the csse of parallel
segments is

( )% A(8)–; COt : =2,(8)

To separate A(s) into real and imaginary parts, re-
place ~ by A+ip rindnote that - - -

c ob A+-ip_sin A—i Sinhp
2C0 ah p—cos x

Then

A(S) =M(X,P)+17V(X,K) +; cot;

(24)

(25)

where 4

~Thevefueofg-r~n mayalweya bekept16sstbene.0,M32bymmtlngwben
n~, & g. u++ d, to tmMormetlon6 thet Jntmimngmtherealendime@
w - of tbo ~Puo fumkoln (refemm 10, P.w). ‘rhuethe~ns
cnn elweye be nude to converge V61Yrepfdly. Indeed, there mist several otlmr
03y3nefonefor A(s) whfch thoogh 1= dmple In form are more rep[dly mnvmgent
then tbe formtde given here (reference10,P. 422).

136(392-37+

Let us put the arbitrary constant k equal h

(2C,Cot ; —ic)cos7-c3in7 in equation (12) and sepa-

rate u(8) ss follows

U(8)=X+W

=UI(8) COS T+ ILLI(S)SiIl‘y (26)
where

Ul(8)=z+i~

= —2C[A(8) +A(8+2@)]+% COt ;—ii (27)

and
u*(s)=z’+iy’

= –2tk[A(8) –A.(8+%B)]–C (28)
It is evident that Ul(s) and w*(8) are generalizations
of Ul(s) and UZ(8), given by equations (14) and (18)
for the oases (6=0, Y=O) amd (6=0, 7=r/2), respec-
tively.

Employing relation (25), equation (27) giving WI(8)
may be sepmated into

i=–2c[M(A, #)+M(A, p+2p)]
Iv= –zc[~(x, K)+N(L p+219)]-c

(27a)

It is observed that for p= —& the coordinate become
zp=–4cM(x, p)
~B=—c 1

(27b)

Equation (27a) is most useful in he rieighborhood of
I.L=—~. For values of P near a, relation (27) is iirst
rewritten b; making use of the period property
A(s+2cJ) =A(s)e-@, and we have

z= —2C[M(X,p) +M(x, p—2a) Cos

1

+N(h, jF2a) Sin q+c sin a

Y=–2c[~(h K)+N(h p–2a) cm 6
(27c)

–M(A, p–2a) Sin Iq+ccos 6
For ~= a, equation (27c) becom~

~= –2c[M(& a) (l+cos ~)–~(1, a) sin ~]]
+Csius

~== –2C[iV(X, a) (1–COS 3)–.M(A, a) sin 6]‘1
(27d)

+C cm a J
It may be remarked that equations (27), which hold
also for the special csse 6=0, show immediately that
in this wise y8=—c and y==c, or that the gap of the
parallel segments is 2c. In the general csse @#O,
~=0) it is clear from (27d) that the point (%, @
= (O, c) lies on cl. ~The “gap” ss messured along the
y ti (i. e., from x~=O to X==O) is therefore again 2c.
The effect of decalage may be considered to a fit
order to be a rotation of the segment c1 for the csse
(6=0, 7=0) by the angle 6/2 about the point (O,c).

Employing relation (25), equation (28) giving u,(8)
may be separated into

2?= —2c[—N(x,p) +N(x,#+2p)] —c
y’= –2C[M(A,M)–M(A,P+’2P)I }

(28n)

It is observed that for P= —B the coordinates become
qq’= –4cN(i,/3) –c
yj’=0 }
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In the neighborhood of P=a, it may be preferable to
expres9 equation (28a) as follows

z’= —2c[—iv(x,p) +N(x,p—2a) cm

1

–M(x,p–2a) sin a]+c em a
Y’= –2@4(x,P)-M(x,p-2a) cm 6

(28c)

–iV(A,~-2a) Sin 6]–G Sin 6
For p=a the coordinates are seen to be

x=’=2 C[N(&a) (1+COS6)
, +Af(k,a) sill 6]+C Cm 6

y=’= –2c[M(k,a) (1–COS 6)
1

(28d)

+~(~,a) Sin ~]–c Sin 6

For 3=0 it is clear horn (28b) and (28d) that
y=’=gp’=O. In general, for 6#0 it can be seen that
the coordinates (~’, y.’)= (—c,O) ~~fy equation
(28d), hence this point lies on c,.

The general
separated into

where

equation (12) or (26) may now be

u(8)=x+iY (29)

x=x Cos -j’+x’ sin‘y

Y=y Cos ‘y’+y’ sin-y
In particular, it is clear from the foregoing that the
lower segment cgis situated at Y~= –2c cos y and that
the point (X., Y=)= (—c sin Y, c cm y) lies on the
segment cl.

If there are given any two line segments in position,
the three ratios c,: c*: t7:fS are known (in addition
~ is lmown), and the quantities a, /3, and y are to be
determined. Equation (29) is transcendental and a
direct solution for a given case is not available;
however, an intiect pmmdure of b~ding UP Chm
similar to figure 4 (for which 6=0) for dMerent values
of ~may be resorted to. The case of parallel segments,
as well as the degenerate monoplane case (cf. sec.
4), will prove helpful in this procedure.

du
For later reference, the derivative expression ~

may be put down. We have

“t (30)

where

.;cd~=i[A’ (8) —A’ (s+%19)]

=.P’ (NJ+w’ (M)

In order to determine P, Q, P’, and Q’, the following
development is noted

where

1—COSAcosh #M’(A,P)=2(mgh &–cos ~)

–~$1 ~ tiw sin (mA+nb) sinh m~

Hence,

P=M’(x,p)+M’(x,p+ 2p)

Q=N’WP)+N’(LP+2P)
P’= –N’ (x,P) +N’ (x,P+213)

Q’=~’(x,A-34’(A,M+ %9)
And fhldy

~=2c[P Cm 7+P’ sin y+i(Q COS y+Q’ siny)]

I (32)

The equations of this section may be simplified in
the noteworthy special case in which a=~. The
constant 2@ is in this case equal to half the imaginary
period, i. e., 2@=u’ and, in particular, the line seg-
ments c1 and G are equal. By reference 10, page 422,
we have

.$e -$
A(.s+u’)=~e

This expression may therefore replace A(8+2@) in
equations (26), (27), and (28). Similarly in equation
(30) A-’(8+2@) may be replaced by A’(s+u’) where

A’(s+@’)= –~ -i >2;9, %?@-])” Cos[m+ (n– 1/2)6]
m=)n-l

3. TRANSFORMATION OF A NEARLY CIRCULAR RING
REGION IN THE WPLANE INTO A TRULY CIRCULAR
RING REGION IN THE Z PLANE

In the foregoing sections, there have been obtained
the equations transforming the region extmnal to two
circles (ii the tplane); or the annular region between
two concentric circles (ii the w phme); or also a reo-
tanguk region (ii the 8 pb.ne); into the region
external to any two nonintemecting line segments (in
the u plane). It may now be imagined, for definite-
ness, that two airfoil profles are generated about the
two line segments as chords in the u plane (fig. 6 (a)).
In the plane of the rectangle, the two profiles will
correspond to curves of small amplitude extending

.
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from h=—r to “L=T nesr the boundary lines p=a where the radii are respectively,
and p= –P, respectively. In the ring region, the R,=ceuI, R,=ct%, a,>O, u,<O
proiilca will correspond to two nearly circulsr contours
forming an annular region (fig. 5 (c)). It is intended (At times it will be found convenient to denote u, by

to show how this annular region may be transfon.ued a’ and Ujby —/3’).

into fLconcentric circular ring region (fig. 5 (e)). Let the function that transforms the w plane con-
At present it is assumed that the nearly circular fo~~y ~to the z PIWMbe fit~n m

ring region in the w plane corresponding to a given w= Zek(z) (5)
biplane celhde in the u plane is known. It is observed where z=c&*=Re* and where h(z) represents a’
that this knowledge impli~ that equation (2.12) may Laurent series with complex coefficients:
be inverted and the vaxiablcs h, p solved for in terms
of x and y. How this task may be done is taken up

h(z) =ao+~(a#+fz_.z-’) (6)

in section 4. It is recalled here that the variable A where RIs ]z ]ZR1, or with z=Re~
corrmponds to —O (equation (1.6)) and that the h(z) =j(R,P) +i$l?,q) (6’)
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neighborhood of the point W=C, which corresponds b I It is seen that on ~1,
the region at infinity in the t or u planes, must be an log :=h(z)=h(R,,P)
internal point of the annular region.

The annular region in the w plane then contains =j(R,,P)+@(R1,q) =P1–u1+i(o–q),
two boundary contours, an outer contour BI and an or, in short,
inner contour B,. Let the contour B, be defined by hi(p) =Yl(w) +@l(9) =M1–U1+UO-P)l (7)

w= f#’fe)+id

and the contour Bz by
w=@’Jo+u

(1) where (O–W), means that the quanti~ 9–P is evalu-

ated around 0,. On 0, similarly
h,(p) =jl(w) +239($0) =A- Uz+ue- P)2

(2)
(8)

Let the complex coefficients in equation (6) be
where the range of.0 may be chosen as OZOZ27r. expressed as

Consider now a z plane (fig. 5 (e)) containing two
an=&+iBn

a_x=A_=+iB_ J
(9)

concentric circles about the origin, an outer circle 01 Then, from equations (6) and (7), it is found that
that corresponds to B, and an inner circle 0, that
correaponda to B2. The circle 0, may be deiined by f;(p) =Ao+~[(AaR,”+L,R,-’) COS mp

z= &%+@ (3) – (B.&’-B-.”)”) Sin ‘?LQ]

and the circle 02 by
.

gl (P)=Bo+~[(B~R1’+B_~Rl-”) cos nw
z= &w*+% (4) + (A.R,”–AJ?l-”) sin W]

(lo)

(11)
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Siiarly

f2(P)=Ao+~[(A&2”+ LnR2*) maw

– (B.R,”–B-.R2-”) Einnfo] (12)

92(P)=BO+9BJZ2”+B..R2+) cm nq

+ (AnR2”–A-.R2-”) sin n~] (13)

From equation (10),

Similarly from equation (12),

JA.RZn+A-.R2-’=a2 a=~ ~%jj(w)ma n~p
)

J–B.Rzn+BtiRz-”=bZ.=~ ~f,(~) sk ndp

“1

(15)
and

JAo=azO=$T o J‘f2(P)dP=~ ,%iH72

The equality al,O=@,O=AO is a condition of mi-
formity that is necesamy since h(z) is a regular analytic
function in the ring region. There is, in addition, an
arbitrary element in equations (10) to (13) (which
may be chosen in a number of ways) viz, there is at
our disposal the choice of the point in the z plime that
shall correspond to, say w= c. This choice, which
will be introduced at a later point (p. 14), is Z=C
when W=C, and will fix the constants A. and B. in
terms of RI and Rz and the remaining coeflioienta.

From the iirst parts of equations (14) and (15),

there is obtained on solving for A=, A_,, B., and B-fl

‘“=UWB==-:$FT
‘-*=-i5’Y%’n’and-i5’’%iT:

(16)

Let

where
T=ul—us(=a’+/3’)

Substituting by means of equation (16) in equation
(11), it is seen that

or also

gl(~)=BO+~(—bl.= mth n7+& ~ch nr) cos n~

+~(a,~ cm% nr–a2,~ csch m) sin nq (17)

Similarly, by substitution of equation (16) in equation
(13),

g~(q)=BO+~(—& mch n7+ba. COthnr) w w

+$(% uch n7–a2.. ~th nr) Sk nq (18)

Denoting the variable in equation (17) by P’ instead of P and substituting by means of equations (14) and
(15), it appears that

.

or
.

tW)=Bo+:
2[s

Ozjx(P)sinn(p+) CA n7dp–~f,(p) einn(p–p’) c-d ndq]%- (19)
1

In a simiiar manner,
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The two series expressions

a) & sin n(p—p’) coth nr
1

b) $ sin n(w–p’) tich nr
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that occur in equations (19) and (20) maybe evaluated
in terms of elliptic functions. Consider the expansion
for ~(u) (reference 10, p. 403)

W)-:=zdu)=g+j
.

In order not to confuse the periods occurring here with
those of the preceding section, the real period is
denoted by 2u,=27r, and the imaginary period by
2u2=2iT,

z,(u) =;cot:+2
z

~-mr .
~ ~_e-%sm nu

‘x~”u+x(==-’)~nu
1 1

=$ coth ?LTi3hnu (21)

Consider the expanzion for {(u+ u,) (reference 10,
p. 426) K

{(u+@,)
e ‘(u)_+.–q/=Z(u)= ~ (u)

Nor ~~=r this expression becomes
.

=$’ csch nr sin nu (22)

Then repl&ng u by p–p’, equations (19) and (2o)
become

JFor Meren% mto the datlnitlonof theefumlbn(cLrefemaca11andE)

The If fnnotlon Lgdaflned fn wnatlon (26) of the pmedlng e&tfom
on elllptIo fnnctfoname eo ‘md G to dmom the EIand H fnnctfom.

am Writen

J91(P’)=BO+: O%(dz(m’)dw
J–:~%kdzdd)dlo(23)

J
92(%J)=Bo+: ~&y2($o)z1(qw’)dp

J–$ o%jl(dz(9-#)dP“(24)
H’ (U)Since Z(U)=* and Z,(u)=H~, there is obtained

also by integration.by parts:

J‘ gl(q’)=%- 4 h~ o _f2’(w)k e(p–d)dp

+:~j,’(d k H(P–P’)r% (23’)

J9h’)=~o-: o%’(p) log H(q–P’)&

+~~yl’(p) log e (P–p’)h (24’)

where the logarithm operates only on the absolute
value of the quantitim e (P—w’) and H(~—p’).

In a manrmrsimilar to the foregoing procedure it is
possible to solve for the coefficients in equations (11)
and (13), substitute in equations (10) and (12), and
obtain as the reciprocal relations to (23) and (24) the
following:

a

JW)=Ao-: o%MZ(p-d)dq”

+:f191(dz1(P–d)d$o (25)

Jfh’)=Ao-: O%h)zdp-d)dp

+:~91(P)z(mOJfY (26)

Equations (23) and (24), which essentially express
Pair of boundarv-value relations for a concentric

& region, permi~ the obtaining of the imaginary
parts of a complex function h(z) along the boundary
circles of a ring region horn a knowledge of the real
parts along the boundaries. These equations me
fundamental iq a potential-theory study of ring regions;
they have been developed in a different manner and
for another purpose by Henri Viiat in 1912 (reference
13, p. 147). It will be shown shortly that equations
(23) and (24), when generalized and regarded as
integral equations instead of being considered as
defbite integrals, make it possible to obtain the com-
plete correspondence which we are seeking for doubly
connected regions.
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The function giving the value of h(z) at any point inierior to the ring region may also be expreaseclin terms
of the real parts of h(z) along the boundaries Cl ud C2. Fromequation(16),

Then equation (6)

where

M=~R2”z-”;;;R;;nye-%

N=y’”z-n;*~R;:pe-”’

The quantities M and I? may be readily expressed in
terms of elliptic functions. Let

Then by equation (22),. .
M=$%’ ~,’ e’(Oj)= - =iZ(o,)

20 (02)
Similarly let
e*l=Bl~z-ne%
Then

~=ie’(~,)—=iZ(oJe (v,)
Then tiredly

(28)

where

or writing
z=&tif .

v2=fp--# +i(u— cm)

Vl=p—p’+i(u—d

Determination of the conztants A, and BO.—It will
be recalled that the neighborhood of the point W=C
corresponds to the region at infinity in the -&and u
planes. In order to make the correspondence of the
w and z planes unique the following condition is put
down. Let Z=C when W=C, henoe causing the region
about Z=C to correspond also to the region at infinity
in the t and u planes. There is, however, an essentisl

fact to be noted, viz, $ evaluated for Z=C is, in gen-

eral,dMerent horn unity, hence generally a magni&a-
tion and rotation of the regions near W=C and Z=C
exizta in the two planes.

.

The conditions to be studied are
W=c

dw—=reiE, evaluated for Z= c
a%

From equation (5)

w=ze’~~

there is obtained

2=eho)(1+z%? ~ ’30)

The condition (29) then corresponds to

[h(z)],-.=’ (31)

And, in view of the preceding relations, equation (29’)
corresponds to

[ 1Zd%*..=ree—l=p+~(31’)

where it is noted that r and $ me given in terms of
p and g as fo~owtx

P=(l+p)’+d

g=tm-lL
1+-p

(29)

(29’)

By equations (6) and (9), it is found that equation (31)
separate9 into

Ao+$(A#+Lc-”)=O (32)

Bo+$(Bn&+ B_ric-’)=O (33)

Also equation (31’) becomes .

~(A#-iL,c_’9=p (34)

~@nCLB_nC-”)= iI (36)

These equations may also be expressed in other
forms. For example, from equation (28), since z= c
corresponds to u=O, P’=0, we have that

.

Jh(c) =o=Ao+iBo–: O*jW(UJdW

+:Jozf2(dz2(ul)dP
where

V2=Q—iU9,
and

Vl=q—iul
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Employing equation (22), this separate9 into

In these equatiomj, andjz may each be altered by the
addition of a constant without altering the values of
the integrals. Hence, if j,(q) –A,, j,(~)–~ are
known (i. e., only the variational parts of j, andfz are
known) and if there are also given or known the quan-
tities R1=WI, Rz=tit, equations (32’) and (33’) de-
termine directly the constants A, and B, so that con-
dition (31) is satisfied.

Since pl and ~S tier from fl and j, by constants
(cf. equations (7) and (8)) they may replacej, andf, in
equations (32’) and (33’). Also, by equations (14)
and (15) it is recalled that

are given the functio~ PIand p~(therefore ~is lmown),
equation (32’) determines the individual quantities
al ‘and UQ(i. e., the radii RI and RJ. Equation (33’)
then again defines the value of the constant B,.

By the use of equations (15) and (16), the conditions
(34) and (35) may also be written in other forms.
Thus

Further study of equations (23) and (24) .—It has
already been mentioned that there me two points of
view from which the simultaneous equations (23) and
(24) may be studied. In one, the equations are re-

garded as definite integral evaluations ~d the func-
tions ~1(P) and f2(P) are lmown as functions of the
variable p. In the other, the equations are regarded
m integral equations and the functions are known in
terme of 0, not p. In the next few paragraph the
definite-integral viewpoint will first be employed and
it will be shown how it may be used to develop biplane
mrangementa in an artificial or indirect manner. The
results obtained by this method will also be” of some
interest and value when the more direct inkgral-
equation point of view is investigated in the subsequent
section.

Families of biplane arrangements,-When~l (p) and
~2(w)meImowm functions,the evaluation of equatime

(23) and (24) determine the “conjugate” functions
gl(q) ~d g~(q). It may be observed that the Fourier .
series expansions of jl(p) and gl (p) and of j~(p) and
gJp) me related by the peculku interchange of co-
efficients as seen in equations (10) to (13). The
existence of the integrals in equations (23) and (24)
requires only that fl (P) and jQ(P) be piecewise con-
tinuous and differentiable, and have no poles of order
equal to or greater than one. In this paper, however,
the only interest is in continuous, single-valued func-
tions ~1 and f~, of period 27r,and satisfying the condi-
tions of uniformity (cf. paragraph following equation
(15)), such functions m may always be associated with
the conformal transformation of doubly connected
regions bounded by continuous closed contours for a
proper choice of coordinat.ea.O

When the functions gl (p) and gQ(w)are lmown, the
correspondence of o and P is immediately bow-n along
the boundary contours since g(p)=O–P. Also, the
functiom fl(~) and JQ(P) together with the constants
al and U9determine 7 the functions M(p) and M(p).
The quantities A and M expressed as functions of
8(= —A) then permit the de- of two contours in
the u plane, the externalregion of which is in one-to-one
correspondence with the ring region. Some specific
examples will shortly be given. With an insight
gained by experience, the functions M(P) and w(p)
may be so chosen that certain desired classes of prac-
tical biplane arrangements may be obtained. It may
be remarked here that once there is obtained a definite
biplane arrangement by means of this process, the
problem may immediately be considered reversed and
thus insight is obtained into the solution of the asso-
ciated integral equation. This notion will be later
extied; in this section, some illustrations of the
afore-mentioned process are briefly presented.*
eThare k on odiiitiondmndkkm on udd cmm(w)~ lo ork timtthe

mntonn M iw & of donbb points (cf. Merenm 1,P. 10), viz,
&l<-E& dm

“’ ‘Ed;z”

7It k nndadood tbnt tha minor ewmtion (31) h to b m~~ti.
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By reference to the Fourier series developments for or finally,
~l(p) ~d Yj(p), equatiom (10) and (12), it may be
observed that a particuhrly simple example is the PI(P)=l.4708—O.1 siu P= —-w(q)

following:

j2(P)=/dw)-”2=Ao+o.l sin$0
=Ao– (BJL-B-Jh-l) sin ~ (36b)

Also let ul=~ –0.1=1.4708, and let u,=–1.4708.

@ence T=al–u2=2(l.4708) and 2cw=2i~=5.8832i.)

---+

––’d-—---~

t
f7 = 07

(a)

g,(p) =–O.04851+0.11114 COSq=g,(p)

It is now possible to deiine the variable O=P+O(W)
along each contour:

e2=– A*=+o+gJqJ)

In addition to the choice of ~1 and Y*, the line seg-
ments, or chords, and their relative positions (deter-

I (7= 907

M

I
–“–”-–3–– ‘-–

—~ b

‘ (y -307

(4

~Gm&.-B1@ane amngwnmts defhedbysrwhlohoimoffiandfiand othor ~tem. (Sm wanatbms(W and (Mb).)

By equations (11) and (13), there may be written for mined by a, & y, and 6) about which the biplane con-
gl(~) ~d gz(~) taurs will be generated may be chosen. (See fig. 6.)

91(W)= (8—P)I=BO+ @l&+B.-IRl-l)Cosq Choose 8=0 and a=~=~ (hence 2u’=2ti). The rec-

92(9)= (e—$@)2=Bo+ (BIR2+B.-IB2-1) Cos p t.angular Cartesh coordinates of the biplane contours

The conditions on A, and B,, equations (32) and (33), are now given by equation (2.29). Figure 6 shows the
arrangements obtained in this numerical case for o

~ve A.,=O; 11,=11-,=~ csch~ (cf. equation (16)), -number of values of the angle of stngger y.

hence l?O=-2B,. (Also, note that for this example, In the elementary example just described the profiles

020[1
for zero stagger aremirror images (fig. o (a)). A simple

equations (34) and (35) give p=q=O, i. e., ~- numerical csse for which this is not true is given by
z-a

=~eiE=l). Then,
~l(w)=M(P)-cl=Ao-oJ ~ (9+30”) (374

gl(q)=–o.l csch$+o.1 mth~cos ~=gz(~)
~2(P)=M2(P)–u9=Ao+ 0.l Sk (P–300) (37b)
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Here, also, choose a=j9–—;J u1= —uz= 1.4708. Then

gl(~)= (O—P)l=Bo+O.09625 cos w—0J3450~ P

The constants A. and BOdetermined by equations (32)
and (33) are

AO=0.0216, 110=-O.0420

Forming 0, and o,, the rectana@ir coordinates of the
contoum are obtained as wns shown in the preceding

v

Indeed, if the process is considered in. the light of a
boundary-value problem of the concentric ring reggonj
it is seen that it is sticiently general to yield any
biplane arrangement (more generally, any doubly
connected region).

Equations (23) and (24) as integral equations.-It
is desirable at this point to introduce the following
notation. Frequent use will be made of subscripts.
The tit subscript will usually be 1 or 2 and will indi-
cate that the designated quantity is to be evaluated at
the boundary Cl or-Ci,-mspect.ixely. (walwBlaud-Bt,

respectively). A second subscript will sometimes be
employed to denote the variable in terms of which the

expressed. Thus pl.e represents the quan-

i

—-Q1 —.—-—x —-—-—- 4-–-–—––-–- J--–——
i I
I-–+3 -==-+
I [7-=0? (7= -q) [7”-S0?

(4 P) (c)

(Q (e) (f)
Ftaurm 7.–Blplnm ormngemants dedned by_ clmlm of fi andfa and othm mrametom. (% manatIom(378)and (37@.)

example. Figure 7 shows some arrangements for
various values of the angle of stagger ~. Figure 7 (f)
shows the arrangement obtained (for 7=0, cf. fig.
7 (a)) when an angle of decalage 3/2= —3° is further
introduced in this numericrd example.

In this manner, by employing appropriate values for
tl(p) ~d ~~(P) (or g](w) ~d g~(~)) ~d for tie o~er
parameters involved, it is possible readily to develop
arrangements of a great variety of contour shapea,
gap/chord values, chord ratios, stsgger, and decahge.

13f31302-37+

tity P evsluated around Cl (or BJ expressed ss a func-
tion of 0; also, M,, denotes the quantity p evaluated
on Cg expressed as a function of q.

It is recalled that by equations (7) and (8)

fl,,=~l,,–gl
fa,,=l%,-–m

or j I and M, and f~ and P9differ by co~t~ti. Th~
in the integrands of equations (23) and (24) the func-
tions jl and .fl may be replaced-by M and M, since the
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additive constants do not contribute tc the integrals.
If a definite, biplane arr~mement is preassigned or,
what is essautially the same, if there is given a definite
nearly circular annular region (in a w plane; w=ce~a),
it is the fi.mctionsPI,eand M. o that may be considered
directly deiined or lmown~ Thus, from an initi~
knowledge of M, oand M.e~d wifi tie fid of equatio~
(23) and (24), it is desired to obtain a lmowledge of
the functions M, ~ and M, ~. From this point of ~e~
the expressions (23) and (24) then represent a pair of
simultaneous integral equations, whose process of
solution is more intricate than that involved in the
process of evaluating the deiinite integrals. The
prcblem maybe restated more precisely:

Gimn two functions M, e and M, o that defie two
continuou9 ccntoura of an annular region with re9pect
to an origin centained by both contours. Then two
pairs of functions MOPand gl, p, and PZ,Wand g~,~ are
to be obtained such that they are interrelated in the
manner shown by the interchmge of coefficients in
the Fourier expansions, equations (10) tc (13), which
also satisfy certain 100sJspecified conditions at. Z=C
(equation (31)), and for which the relations g,= (O–p),,
gz= (o—P)z, which permit an interchange of the argu-
ments 0 and q on each boundmy, are conm%eniwith
the given functions ~1,o sad M. e; that is to say, when
~1,P is expr=ed as a function of o by means of the
function gl, ~ there results the original function PI,e;
in symbols

P1,P=P1.O
when 6= P+gl, P or p= O—gl.o

and similarly
P2.P=P2.8 -

when O=p+gz, v or q=O—g~,a

The process employed in this paper to obtain the
desired solution of the simultaneous imtegralequations
is one of successive approximations or iteration.
The degree of convergence of most methods of suc-
c~ive approximations usually depends on how good
the initial approximation is. In this regard it is
rather fortunate that the contours of practically any
biplane arrangement transform, under the transfor-
mations already developed (with proper choice of
coordinates), into nearly circuhw contours in the w
plane. The nearness of these boundary contours tc
circular centm.rs is very signiiicmt and enables the
initial approximations to be so chosen that the process
ccnvergw ordinarily with great rapidity, one step in
the process being sticient for most practical purposes.

Outline of the method of suooessive approxima-
tionz.-The various steps in the prccess of successive
approximations will be written down schematically.
(Allowing for a difference of notation the proce9s is
essentially similar to that employed in reference 1.)

An extension in the use of subsequent notation must
first be noted. The symbol jlfl represents, as men-
tioned previously, the function f evaluated on 01 and
expressed as a function of 8. The symbol ~1.~,oshall
now be employed to denote the value of jl as given
in the kth step in the process of successive approxim-
ations, expressed as a function of 0. Thus the
symbol gz.,, ~.~ denotes the value of gz given by the

fourth step in the process, expressed as a function of
p~ as given by the third step in the process.

We start with the two functions ~l,e ~d ~a,o that
define the contours 1?, and Bz completely. Employ-
ing o instead of q in the integrrds? equations (32’)
define the constants u,., and u,., and equation (33’)
determines the constant B,.,. The simultaneous
equations (23) and (24) then determine completely
the functions g,.,.e and g,.,,o as follows:

P1.1=8—91.1,0

I
(3s&)

P2.1=0—92.1,8

The vahws p,, ,,.1 and M, ,W,l may now be defined
and these functions may be considered m lmown.
Employing ~l.l and w as variablw fi~ad of w equ~-
tions (32’) and (33’) determine u1.z, u~.~, and Bo.z.
Equations (23) and (24) determine then the functions
gl. ~ fi.1 ~d gs.z ~Z.1,~~ch maybe expr~ed cs fUC-
tions of o in view of equation (38rL). The vmkbles
m 1 ~d m. z are now given by

$%.2=0—91.2,d
}

(38b)
V2.2=0—92.%o

The functiom M, ~.2 and p% ~.~ are now determined
and the process may be contiuued as outlined for
P]. ~1.1~d Pg.ti.l. It is noteworthy that this process
converges, in practice, with extreme rapidity, that is
b my, the functions M,~.z ~d M,tit ~pproach iden-
tity with Pl,n.z+l ~d ~z,m~~l for small values of k.
Experience has shown (cf. also reference 1) that in
ordinary cases one, or at most two, steps in the process
are -cient for great accuracy. It must be noted,
however, that a completely rigorous discussion of the
convergence procws is lacking.

In order to illustrate the method, consider the
blplsme arrangements of figure 7 defied by the func-
tions in equations (37a) and (37b). Forgetting for
the moment that the various functions are known,
assume only M.~ and PZOto be given ~d ~t~mpt tC
obtain vl, ~ and jL2,~. Figure 8 shows the various
functions described. It is seen that the set of curves
91.%1. 9%%1, P1.m,l. ~d W,~,1 (obtained by a 20-
point numerical process similar to that sketched in

~~otfngthefnftfafappraxfmtfon bys mm mbscript, observe that tbe IrMlef
ap~tfonm~~ herds m.o-d—fi,o end w,a. o-mewhere gM-oxo=O. Mom
-Y, the fnfti tmnef-tfen maY W better dedneif whcue gl,e nnd UMme
arbftmry fundfm% 20 oh= tit theY 21’2tim aP~~om ~ tie ml
mlutbu UIond m Then MIPIOYhU m,eand m,otu veriablm Wd ofOthefune
tfom,UM.fi,andEM.”,m8YbecleanedfromwhfobUIJendG’Mamde@hed
andtheproG=smntfnwl=ontid.(Of.mf~nmLP. 13.)



POTENTIAL FLOW ABOUT ARBITRARY BmLANE WING SECPIONS 65

the appendix of reference 1) are completely coincident
with the known solutions gl,?, g~,?~m,~) and m,~. A
further application of the process can cause no fur-
ther noticeable change.

- @tH——H%
-.2++++++

I I I I I/.501I I I I 4 ,

/0

o
91

p,
J.40

10

d+H—tH—

-.10 I I I I I I I 1% I 1 eI # .!
.?w
I

I I I I I
-d+HH+H+
-Jq50

/%
-1#

, IT -#r , , , , , , , 8 , ,

-1301 I Ii lTll TTi
0 30 60 90 120 150 1802102402703LW .330360

‘e,p, dqees

dw
For future reference, the derivative expression ~

evaluated at the boundary circlw will be required.
I?rom equation (30)

%=%+’%9)
On UI

Mz)=jl,,+%.p
Then

d’to ‘m1z cl‘IA”K1+$$M5’I ““

Observing that dq=d(O-g) this may also be expressed

.df, .g

1dw

1’( )

l–%=

xc,=% T
(39’)

1–3

For the boundary C*, the subscript 1 is replaced by 2.

4. GENERAL MONOPLANE WING SECTION THEORY—
A DEGENERATE CASE OF TEE BIPLANE ANALYSIS

It may be of some interest to discuss in this section
briefly the case of the single airfoil section considered
as a special case of the biplane analysis. A biplane
arrangement in a two-dimensional field of flow ccrre-
sponda mathematically to a doubly connected region.
The degenerate case in which one of the biplane con-

tours reduces to a (regular) point leads to the mono-
plane-wing pro~e the external region of which is
Simply Connected.l” It should therefore be possible
to obtain the complete theory of monoplane wing
sections in potential flow as limiting values of the
formulas already developed for biplane wing sections,
as will be outlined in the present section. Conversely,
the monoplane case is of further significance in ‘that it
permits a more complete understanding of the biplane
analysis and, too, considerably simplifies the practical
evaluations. The numerical process employed in
the monoplane case, it will appeir, needs to be modified
in a relatively minor way to yield the results for or-
dinary biplane combinations. lkdeed, according to
a method outlined by Koebe (reference 2), it is lmown
that even the more general problem of transforming a
multiply connected region (multilane problem) into
a region bounded by circles may be resolved by a
process of successive approximations employing only
the separate cases for the simply connected regions.
The details of this problem remain for a future investi-
gation; it is mentioned here merely as a further possible
application of the degenerate case.

It may tit be observed that as one of the circles
in the t plane reduces to a point the value of a or P
(according M the upper or lower circle degenerates)
becomes infinite. Hence in the degenerate case, the
elliptic functions introduced in the analysis become
circukr functions having a real period 2w=2T and an
imagimwy period 2u’, which is infinite. From equa-
tion (2.23) it is clear that w’=im corresponds to g=O
and that

~ A(s)=: cot :+; ~t ; (1)

Ld B= ~, then emplofi this equation and relation
(1.8) it is found that equation (2.12) becomes

Lim u(s) ei~l’= U,=T,+$ (2)
*=0 1

where the origin in the T_71plane is referred to the mid-
point of the line segment and where

Tl=e%thla (t–h COthU)

a=c c.acha

It is seen that the TI plane corresponds simply to the
-&phme translated to a new origin (01 in fig. 1) and

rotated by an angle ~’=y+~ Equation (2) is noth-

ing more than the well-known transformation leading
to Joukows~ airfoils. The line segment in this case
@=CIJ) is equal to twice the diameter of the circle in
the T1 plane, i. e., cl=4a.

10shictlysp39Mng, thepofntat fnardtyI13prusentaanotherbwmdfuyOndthe17010
II?@ouaare-VO&, tipw cmmeckd and doubly cmmeotd. This fad con%
Spon&totheckumukm m that in the flow formti far the biplane camthere ~Y
be two arbitrary dmnlatfom mxwiti, and fn the monoplane Sow fmmmls, om.
The SOWformula for a s&@y cmmmted r@on without fdugulsrpoblta cannot lm
multiply valued, L e., cannot PCUWSSan arbitrory ofnmlatfom
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If a instead of P, is allowed to approach inilnity
there is obtained

Lim u(s)= u,=T2+~
~= a

where the origin in the U~phme is referred to the mid-
point of the line segment, and where

Z’,=ety(t+ic coth P)

b=C csch ~

The chord length c,=46.
In what immediately follows we show how to express

A, pin the degenerate case in terms of the coordinates
z, y of the airfoil section. These remdts will be of
value in the later det.aznination of X, p from z, y for
the biplane case.

It has been seen that in the degenerate case (13=~ )
the origin of coordinate may be referred to the mid-
point of the chord and

(2)

where the rectangular coordinate in the U1 plane are
(31,?41)i. e.,

U,=x,+iyl

Tl=@(t-ti COtha)

a=c c.scha and +=7+~/2

Let T, be written in the form
q_fl=f@l+f@l (3)

Then
u,=z,+iy,=2fz Cdl (+,+i%) (4)

where
ZI=2U cash *I Cos81

y1=2a sinh +1 sin 01

And upon inversion (cf. reference 1)

r
2 sin’ o~=p+ $+5

d2 Sinh’ *,=—p+ p’+$

where

(5)

‘=’-GHY

It is kllOWnthnt
. .

cot-l(l+im) = —~ log ‘=~
=–~1 log @+@-l)2+4P 1

4 [t’+ (m–1)~’ +2 t~-l*

So that finally equation (6) separates into

-t=%a=i
P=+log @+m2-1)2+4P 1

(7)

[~+ (m–l)q’
These relations express x and pin the monophne case

in terms of 01 and *I and hence by (5) also in terms
of Z1and yl.

Simikxrly,.inorder to obtain A and p for the degener-
ate case in which a=co, replace a by 6 (=c csch ~)
and let

T,=eiy O+ie coth P)
=~eti% (3’)

Then finally Aand p are given by equation (7) in whioh

hmersion of equation (2,12).—It is quite evident
that the direct imiersion of the elliptic transcendental
equation (2.12) (p. 52), if at rdl possible, would be
very laborious. However, amindirect method which
employs the results of the degenerate caaesand which
performs this inversion readily, to any degree of
approximation, will now bo outlined.

Thus, let a definite biplane arrangement be given
(iig. 5(a)). The chords or line segmenti c, and c, may
first be chosen in the following conventi manner.
Let the chord c, be defined by the line FIFI’, where F1
is the midpoint of the dist&e betwee~ ~e ledhw
edge and the center of curvature of the leading edg~
and F1’ is the midpoint of the distance between the
trailing edge rindti-e center of curvature of the trailing
edge. It is observed at thispoint that the only theoret-
ical restriction upon the choice of the chords is that the
singular points tthe end points of the line segments)
be within the contours, or, at most, on the boundarica
themselves. The above-mentioned choice is one
merely of convenience, the object in view being the
defining of a smooth (x, p) relationship, (In reference
1, n sirdar situation is described in detail.) The
above-outlined procedure may be also app~ed to
determine the chord Q of the lower contour of the
biplane Cellule.11

11IDb gv~ttit tlmchordsm detenufned are dmm~ but not mtlte, mrolfel
it fe of come ndventage nnmerimlly to very from the fcmqofng promdure mf.
fiofmtfy t.acausethe abmde to become exectly wuellel and to mnfnffdn aPPrMi-
metafy the fad F end F. Smdf varfatfem frem tbe abdc-eof ohordeontlfnod em of
mfner importanceandwilf not aHmt th smmthnme Of the fh P) rOhtfOA!P.
Thedwhbllity of maintaining the ohordeeraotly WJOIIol,ff they MOrowmnbly
WOM ~ sf=t dthi h duo to the eirmmstanm thet OIMPUOfonotloru of tbe SW.
and Hnd em then amddd.
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The chords c1and c, IIavingbeen conveniently chosen,
it is possible to determine uniquely by means of the
charts outlined previously (Lc. 4), or indirectly from
the equ~tions themselves, the values of the constants

CUtt% 7) and ~. The quantity c may be regarded
throughout as a convenient unit reference length.

Equation (7), it will be recalled, for these valuea of
a, /3, 7, and 6, determines the valuea of x and p (in
terms of tlm rectangular coordinates of the profile
sections), which in the degenernta cases correspond to
profiles geometrically similar to the upper or lower
profiles of the given biplane collule, the only [lifferencea
being that the chords are 4a=4c esch a and 4b=
4Ccsch B,respectively. When. lwwever, the values of ~
and p thus determined arc inserted in equation (2.29)
(employing tho proper periods 2u=%T, 2w’=I
2i (a+p) ) there is obtainccl n biplane arrangenmnt
which has, nmw.mrily, the required chords and position
(i. e., the proper skeleton) and around this skeleton
has generated contour shapw A, and B, which, in
ordinary cases, me nhnost identical with the given
original contours A.Oand BO. TiIus, the use of the
values (A, p) of the dogenmate cuses in the biplane
cumlysisis equivfdcnt to a replacement 0[ the origtial
biplane mr~mement by a now arrangement defined by
tho contours Al and B1. The differences betwean AO
imd A.l, and 2?0rmd BI are remarkably small in prac-
tice. Mathemtitically the foregoing procedure repre-
sents, howevor, only a first, although important, step
in a process of successive approximations which we
outline as follows.

Consider only A. and Al. The contour A, defines,
by means of equation (7), a new degenerate (A, p)
relation. Tho di.iferences between this new (k, p)
relation of Al and the original degenerate (A,p) relation
of AO is a proper criterion of the differences between
tho contoum A. and A, themselves since, if thwe (x, p)
functions coincide, the contours must coincide. Hence,
by a shifting process similar ta that commonly em-
ployed in methods O( sucwwive approximations, the
first approsimdion to the desired (A, y) relation of A..
(this lirst approxinmtion has been here considwed
to bc the degenerate (h, p) relation itself of Ao) may
be corrected by these diilorames to give a second and
better approximation. The process may be repeated k
times, if necessary, until the degenerate (A, p) relation
of At coincides with tho degenerate (~, p) relation of
Ao, hence Ab coincides with AO, and therefore the
ficturd (x, ~) relation that defines the contour At
itself in the biplane case (i. e., by equation (2.29)) is
the desired (A, p) relation of Ao.

Singular points in the monoplane case.-The mono-
plane case may also be useful in obtain@ the eingdar
points of the biplane tiansfonnation to a good iirst,
opprosimation. From equation (2):

U*=T,+$

the singular points are given by

;:=o=l_S?l
1 T?
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or by
T1~a

Since by equation (3)
T1=ae~+f 81

it is evident that the singukw points correspond to
(A, 01)= (0, O) ~d (O, r), respectively. On replacing
A and 19,in equations (6) and (7) by these values it
is seen that the singular points (h= 1,) of the upper
chord (p= a) are given by

—tan A,=
sinh a COS71

I+ Coshaslny’ (8)

Similarly for the chord of the lower profile (p= –~)
we get

(s’)

It may also be useful to note that to ‘a tit approxi-
mation (the approximation being better the greater “
a+o) the chords of a biplane celh.de are given by
C1=4Ccsch a, cj=4c csch ~. Hence the chord ratio is

approximately
c1 Sinh p
Z=ti-a ~

It has been shown thus far that the degenerate mono-
plane case may be of value in the determination of
~ and x for a biplane cellule. The limiting forms of
the simultaneous integral equations will now be briefly
discussed.

Forms of the integral equations (3.23) and (3.24)
for the monoplsne case.-Consider the sim~~ncoW
equations (23) and (24) of section 3, which define
the distortion of two contours from two circles.
Let p’ =—u2=~, i. e., R~=o, the interior circle of
figure 5 (e) degenerates to a point. It is seen then
that the Laurent serks, equation (3.6), becomes a
one-way ascendingpower seriesand a_== A_m+iB_n= O.
We have also since T=a’+19’=uJ that equations (3.21)
and (3.22) give

Z(p–w’)=o, 2,(9–9’)=+ cot q

Equations (3.23) and (3.24) then reduce to
Bquation

J
‘j,(p) cot qtigl(P’)=Bo–2+ o

a single

(9)

Equation (9), considered as an integral equation,
enables the transforming of tho contour of rLsimply
connected reggoninto a circde. The process of iteration
outlined in the preceding section is directly applicable
in this simpler case. (Cf. reference 1.) The constants
Ao, Bo, and u]=a’ may be determined, as before, from
Dquations (3.32) and (3.33).
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In the event that a’= co, the outer circle of figure
5(e) becomes infinitely large, i. e., Ill= co. Then the
Laurent series (3.6) becomes a descenbg power
series and G=Am+iB.=0. With f,=gl=O and
7= co we iind that equatioqs”(3.28) and (3.24) reduce h

(lo)

or also

J H92(P’)=BO–: ~hj.h) log sin q dfp (lo’)

The functions gl(p) and g~(p), de=ed by equa-
tions (9) and (10) by separate treatment of the two
monoplane casea, may when lmown be employed as a
convenient initial approximation (cf. footnote 9) in
the more general case.

The well-lmown flow function for a single circular
cylinder may be brought into combination with the
results of-this section to yield the flow about an arbl-

2 ‘pfape

o

1
c,

+

- .=,---- \,.
/c I-

! c, ,
‘.._. /.~’

‘1-,

(a)

spend to the contours of the biplane arrangement rmd
are not to be confused with the contours K1 tind K2 of
the t plane (fig. 6 (d)) which, in general, are not circles.
The primes will be retained to denote this dillerence.
The relation between the z and t’ planes is (cf. equa-
tion (1.4))

Also by the relation

i

(b)

(1)

the region extermd to the circles K,’ and K,’ is mapped
into a rectmgulax region in the d plane bounded by
the lines 1,’ and L’ (cf. equation (1.8) and fig. 9).
For later reference the relation between s’ and z is also .
noted here:

and since Z=C@iP

Z=ctr” (3)

and s’= h’+iP’ it is clear that

P’
s‘ plone

6

‘L..
‘~v

@

r.

U*
02 ‘- c Csch p

K;

(c)

trary single airfoil ns has been already obtained in
reference 3. We proceed at once to the more general
case to introduce the flow function for two circular
cylinders into the biplane analysis.

5. POTENTIAL FLOW ABOUT THE BIPLANE CONTOURS

Potential flow around two circles.-It has ,thus far
been shown how the two contours of a biplane arrange-
ment, in a u plane, may be transformed into two con-
centric circles in the z plane. It is desirable in what
follows to transform the concentric circles Cl and C2of
the z plane into the coaxial ones ICI’ and KS’ in a t’ plame
(fig. 9). The circles K,’ and Kt’ will thus also corre-

(2)

~OUEE 9.—llInshatingthofbv r@OIMh theG 8’, andt’R181M.

~f=—p

fl’=u }
(4)

Hence the boundary lines 11’ and 12’ me given respec-
tively by

p’=a’=u,, p’=–~’=ls,
where

a’>o~ B’>0

(It will also be recalled from section 3 (cf. line following
equation (3.16)) that al—ua=a’+~’=r.)

In a noteworthy paper (reference 4) Lagally has
given the complex flow potential for uuiform flow past
two cimlea. His formula makes use of the interme-
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diate s’ plane and the complex flow potential in the s’
plane, is given bylz

[
—20ual ~(s’) +~(s’+2ip’) –:71s’

1

+2ti. ~(s’)-~(s’+2@’)] (5)

In this equation I’=– (l’l+l’Z) where 1’1 and I’j- are
the individual arbitrary circulations about K1’ and Ka’,
respectively (see fig. 9; the flmiitie direction of rl or rz,
which is opposite to that of 17,is chosen stich that as
one traveraes the contour in this direction the flow
region is on the right). The symbol I“ denotw the
(‘ countercirculation” I“ = rl— rt. The velocity at
infinity is um+Wm . The periods of the elliptic func-
tions are, as in section 3, 2ul=2~, 2tia=2i(a’ +/3’) =2i7.

Equrkion (5) shows directly that the whole flow is
built up by linear superposition of four separata flows,
for each of which one of the qurmtitiear, r’, Wm,and
o~ is diflerent from zero.

In the first partial flow with the factor r’, both cir-
culations are equal and opposite about the two circles,

rI=— r2=$. The streamlines are the circles of the

coaxial pencil. The velocity at infinity is zero. In
the second partial flow with the factor I’, the two cir-

culations are equal. rl=rj=—~. The velocity at

iniinity is again zero. The third partial flow with the
factor Um is a translator flow without circulation,
normal to the line of centers of the two circles. The
fourth partial flow with the factor o. is a translator
flow without circulation in the direction of the line of
centers of the two circles.

The flow at the surface of the two oircles, and the
determination of I’ and I“.—It is convenient to define
the veloci~ at infinity, whose rectangukw components
are U. and o~, in another manner, by introducing a
magnitude V. and an angle of attack aa (fig. 9 (c)).
Let

U.=— Vc COS ae

v.= v. sinac}
(6)

or, in a single exprwsion,

um+wa=— VCe-~

By derivation of equation (5) with regard to s’, we
obtain the complex velocity function in the s’ plane as

TV(s’) =4+ ~rI–~ 2ik(s’)–r(s’+2@’)] +1-4*]

–2cVo cos a,ly(s ) +p(S’+2if?’)+2q1/T]

–2iCVC Sin a. @(S’) –p(S’+2i@’)] (7)

This expression gives the velocity components Z71-iV1
at any point of the rectanguku region in the s’ plane.
It is a real quantity on each of the boundaries, p’ =a’,
P!= —B’ of the rectangle since these boundaries are
streamlines and the normal flow VI vanishes.
Let us evaluate TV for each of the two csses:

(1) s“= A’+ia’ corresponding ta the boundary l,’
(2) s’=~’–i~’ corrwpon~ to the boundary ~. In
case (1) we obtain

–2CV= COSaG@(X’+ia’)+p(A’–ia’) +2qJr]

—2iCV0Sin a.@ (1’+ia’) —p(X’—ia’)] (8)

or

wl=g;–2*~R1(A’, a;)–2cV, cos aC&(~’, a’)

—2CVCsin aJ?3(h’, a’) (9)

where RI, RA,and R3 are red quantities introduced for
brevity in notation and de6ned by the following equa-
tions (the primes are dropped for convenience): u

RI(x, a)=i~(~+ia)–~(k–ia)]+~–~ (lo)

n The developments given here for i%, & and lb are rapidly mnvergent when

r-d-1+’ie~ ~y~titi; Other aqmnsfons are prudble (of. referanm

[0, p. 422)and, fn cartafnmsq more ddrabla For emmplq ~ben T k sndl, say

I= than ~, it is Wle by a simple fransformatfon to fntemhmge the rd and

~ wfode Of* dffPtfo fnmtfone (cL ti~ote 4) and obtafn mere rapldfy
xmvargent developineni.s.
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R,(X, a)=p(X+i.a)+p(A-ia) +2+ (11)

R3(Xj a)=i~(A+ia)-p(A-is)] (12)

where
*=e-r

In case (2) there is obtabmd similarly

w2=g+T= r R,(x’, ~’)–2cvc COS4R,(A’, &)

+2cVC sin ~RJx’, P’) (13)

In order to spec~ the circulation I’ and the counter-
circuhtion r’, we make use of the Kutta-Joukowslcc

condition for iinite velocities at the sharp trailing edges.
Equations (9) and (13) must vanish for the particular
values of X’ that correspond to t,hetrailing edges of the
upper and lower contours of the biplane combination.
Let ~< and x,’ be the values of A corresponding to the
trailing edges of the two contours.]’ Then we htive

W(A1’, a’)=~T—2&R11—2cVC cm a&gl
1

—2CVCsin .J?31=0
\ (14)

W(A2’, iI’)=&+;R1l-2cVc CCSCGR12

+2cVC SillLKCRZ,=O t

where the R’s with double subscripts are constnnts
defined as follows. (See equations (10)– (12).)

Solving for Zz
r’

~ and ~in (14)

$= —2CV,
cos aJR,l–R2J+sin G (RsI+Rs~)

[ R1l+RIz 1
[~=2cv cm aJRnR22+R*lR12) —sin %(RI]R82—R31R19)

~11+~1% 1

In order to obtain the angle of zero lift f?., in the
plane of the circles, we equate 18I’=0 and solve for the
particular value of the angle of attack ae,which is
denoted as –B. (i. e., for a.=–~c, I’=0). Then we
have at once from (15)

(16)

with this definition of p,, the total circulation may be
expressed as

r= —47~c sin (a.+~=) (17)

where the constant K is

(Tn the limiting case9~’=~, a’=m, cKisequfdto

c csch a’ or c csch 13’,respectively, which are the radii
of K1’ or Kz’, respectively.)

Similarly, the angle 76maybe defined ss the angle of
attnck for which countercirculation r’ vanishes @ e.,
for a.=—~C, r’=o.) Then horn (15)

tnn ~.= —
R,IR22+R,IR,2

and I“ may be expressed as

(18)

11Thevaln~ OfXltandMIIU3yMdetemnfnwlmfdfOmLOtAIandkdenote
thevefuedofX.(-4)that~ndtitheendpofnbof thechwd8, L.q Al!and
X.,,or -& and + are the dngulgr pdota of cquetfon (2Lz). Then the vehm of
A’(--q) cnrrespondfngto k end M are given by~,’ end h’, or -m and -% where
(d. sec.2) m-h-h. q and PI.H ~

u The htalllft fsj as LnthemcmpLmeML=pVr(d. p.2fJEnrdt6pnrdemth.

r’=–8dvc sin (.O+TJ (19)

where the constant J is

J= 1 RllR8~—Rs1R12
COs‘yO R11+R12

Velooity at the boundary oontours of the biplane
combination .—Let the complex potential function in
the plane containing the biplane contours (u plane)
be ~, then the complex velocity function is

or

(20)

where v= and or are the velocity components in the
direction of the coordinate axes in the u plane. Intro-
ducing the intermediate planes, we have

(21)

It is tit of importance to consider the chnngea
that a velocity at infinity in the u plane undergoes
when transformed to the t’ (or 8’) planes. (II will
be recalled that U=CU corresponds to t=~, s=O,
W=C, Z=C, s’=0, ti=co.) Let –Ve-tiO denote the
velocity at infinity in the u plane and, ns before,
—V.e-&e denotw the velocity at infinity in the #
plane. (See figs. 9 and 10; the velooity magnitudes
are V and Vc and the anglea of attack are % and UC)
respectively.)
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Then noting equations .(2.10) and (3.29) it is found
from (21) that

VC=rV
1

(9J)
%=%+Y+t

where r and g are determined by equation (3.31’)
(r is generally near unity,: near zero), and Y is the
angle of stagger of the biplane chords.

The angle of zero lift for the biplane combination
is given by

BO=A+7+E

i. e., for %=—IL the lift vanishea.
In order to determine the velocities at each boundary

contour of the biplane combination, it is snflicient to
obtain the magnitudes of the individual terms in
equation (21) at each boundary. For the upper
profile we have by equation (9)

-$$=w,

From equation (3)

d?’ 1
IHZ=z

71

From equation (3.4o) or (3.4o’)

I%I=H[(’+%9’+(%9T

From equation (1.7)

And from equation (2.32)

+ (a cog -y+(?,’ sin T)y

(The subscript 1 in P,, P,’, Q,, and Q,’ denotes that
the vsluea of (A, p) which define the upper contour are
to be used.) Hence, finally for the velocity VIat any
point (z, y) or (A, ~) of the surface of the upper profile
there E obtained

“’=3(1+%)+($33-*[(P,cm ~+ P,’ sin ~)’+ (Q, Cos~+ Q*’ sin ~)q-~ (23)

Similarly for the velocity at each point of the surface of the lower proiile

“=w’+a’+(m-*[(P, Cos7+P” sin y)’+ (Q’ Cos ~+Q,’ sin y)q-+ . (24)

It may be worth while to point out in r6w.un6of
equations (23) and (24) that these relations do contain
the necessary pammetera for the study of the potential
flow in any doubly connectid region. It is observed
that the uniform stream velocity V and the angle of
attuck q for the biplane celhde occur only in WI or WZ
(equations (9) and (13)) and me related to the veloci@
V, and angle of attack at for the two circles in the t’

plane by equation (22). The circulation I’ and the
countmcirculation I“, also occur in WI and W’. These
circulations are, in general, arbitrary but may be con-
sidered specified or fixed in tho case of biplane con-
tours by equations (17) and (19). The parametm
~~ I%~~ ~d t de~~e the POSitiOn~d atti~de Of
the profile chords, i. e., the gap/chord, chord ratio,
stagger, and decalage. The variables h, p define the
shapea of the contours, having the chosen line seg-
ments as chords. The functions j and g furnish the
means of transition from the two arbitrary contours
to two circular boundaries (i. e., from O, ,u to p, u).
The parametem a’ and @’ determine the radii of the
circles tmd are fixed by the local conditions at Z=C
corresponding to the region at iniiuity (equation
(3.29)).

The local superstream pressure at points of the
boundary surfaces, in terms of the dynamic pressure
of the uniform stream, is given by

?=+)’%=+’ (25)

where

The genamilformulas can be somewhat simpli6ed in
certain special cases. For example, in the case of
biplan? contours described about parallel segments as
chords the parameter 6=0 and, in addition, if the
chords are equal, a=13.

Application may be made of the Blasius formulas for
obtaining the total lift of the biplane combination. It
is readily found that the total lift is, as in the mono-
plane case given by L=PVI’ per unit span length, whero
r is the total circulation, and the lift vector L is
perpendicular to the direction of the uniform stream V.
The total integrated moment as well as the forces on
the separate contours may also be developed without
regard to the local pressure formula (25) though tho
expressions are not of particularly simple forms. In
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the special case of biplane combinations composed of
the framework of the line segments themselves, tlm
formulsa for the forces and moments will reduce some-
what. These and further special applicdons me
reserved for the future.

As an example of the application of the formnlm
presented in this paper the pressuredistribution for the
biplane cellule shown in figure 10 (N. A. C. A. 4412 air-

-L-+=’
RQ- 10.—Bl@ene amngemnt (N. A. o. A.m z20tILln).

foil section) is developed. The curves representing the
91,92,PI, ~d M fictio~ are shown in figure 11. The
pressure distribution is given in figure 12 for values of
the biplane combination lift coefficient: C~=O, 0.5,
1.0, and 1.5. The pressure distribution for the mono-
plane case (cf. reference 14) is dso presented for
comparison. The numerical procedure is outlined
under table I.

LANGLEY MEMORIAL AERONAUTIC~ LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

1LMWLE% FIELD, VA., June 8, 1936.
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EXPLANATION OF TABLE I

Table I presents in outline the numericnl procedure
in obtaining the velocities nnd pressures at the
boundaries of the biplane combination shown in figure
10. The gnp/chord=O.825, stagger/chord= O.5S0,
chord/chord= 1, and the decalage=O. The param-
eters a, B, Y, and 6 nre: u=13=1-44369 7=—30°9 and
3=0. The rectan.@r eoordimtes z, y of the profiles
me givm in columns 1 and 2. (c=unity.) The
values of h, ~ which correspond (i. e., satisfy equation
(2.29)) me @vm ~ COlUmIIS3 and 4 and have been
calcnhted by the method outlined in section 4.
The constants AO=0.0467, .BO=–0.0106, r=l.025,
~= –0”3’, a’=1.333, ~’=1.303, 7=2.636 and the
angular distortion functions gl and gz (column 5) are
determined by the method outlined in section 3.
Column 6 presents the angle P=O–g where 0= –k.
The functions R,, R~, and RS given in oolumns 7, 8,
and 9 are determined by equations (5.10)— (5.12).

Column 10 gives the qu~ti@ h=[(l+~~+(~)~

for each prcdile obtained gmphiodly. (See fig. 11.)
Column 11 give9 the quantity Ic=[(F’ em -r+
P’ sin Y)’+ (Q cos Y+Q’ sin 7)7-* for eaoh profile. In
determmm. . g the next column, we require the singular
points of the chords m determined by equation (2.22),
h,=91°49’, hI=4005S’. Hence P,=–93”22’, P2=
–36°14’ (cf. footnote 14). The constants oeourring
in equation (5.14) are then RI1=O.3444, R:l=O.2617,
RZI=0.3659, R,z=O.9431, R,z=–0.4890, R,z=t).7117.
Equation (5.16) gives then ~c=34°51’ rmd equation

(5.17) determines K=l.020. The circulation is no~~
r=–4~cV.(1.020) sin (%+34051’). Equation (5.18)
determines 7c=38°5’ and (5.19) gives J= –0.09S7.
The countercirculation I“=8rcv,(0.0987) sin (a.+
3S05’). The lift coefficient may be expressed as UL=

pvr
~ where q=$PJ72. The chord for each profile in

tie ex~ple considered is equal to (2.106)c, hence
CL=–2m(0.985) sin (a.+34°51’). (In the mono-
plane case the lift coefficient for the N. A. C. A. 4412
airfoil in two-dimensional potential flow is obtained as
(cf. reference 14) 2r(l.114) sin (a+constant) or the
slope of the lift curve in the monophme case is about
13 percent greater than that in the biplane e~ample
treated). Putting C~=O, 0.5, 1.0, and 1.5, respec-
thely, the angles % are determined m a,= —34°51’,
—3008’, —25024’, and —20035’, respectively (i. e.,
by equation (5.22) %=–4048’, 005’, 4033’, 9022’,
respectively). Columns 12–15 of the table give

the ValUeS of ~ rmd~ for the for%o~g four values

of %, and me determined by equations (6.9) and
(5.13). The velocities at each profile surface o, and
O*are given in terms of the stream velocity V by the

u~ WJA ~d 02
formulas (5.23) and (5.24), ~= ~ ‘V’

~ and $ shown in figure~c~” The pressure ratios ~

12 are given by equation (5.26). -
The Smithsonian Tables of Hyperbolic Functions

were found useful in the numerical work.

●



POTH NTIAL FLOW ABOUT ARBITRARY BIPLANE WING SECTIO.NS

TABLE I. BIPLANE ARRANGEMENT N. A. C. A. 4412

(SEE FIG. IQ)
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